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Abstract— Asking questions is essential for humans and
robots in learning and interaction. To enable robots to ask
insightful questions, we first describe the cognitive process
behind the inquisitive nature of humans and then propose
a dataset, CAWS (Curious About Weird Scene), consisting
of images, textual descriptions, and questions. We employ a
text-to-image generative model to produce images from textual
descriptions with factual inconsistencies to incur cognitive
uncertainties for robots in understanding the images. Our
study highlights the significance of considering humans’
inquiry process under uncertainty. We also claim that the
proposed dataset can be utilized to improve interactive robot
agents and their ability to come up with human-like and
insightful questions.

Index Terms - Interactive robot, Uncertainty resolution,
Question generation, Inquisitive agent, Curiosity, Information
gap theory

I. INTRODUCTION

Asking questions for humans plays a significant role in not
only mitigating uncertainty from their surroundings [1] but
also enhancing the validity of interactions [2]. Specifically,
the ability to ask questions allows active learning in cognitive
development [3], [4] in line with learning from interaction
with others [5]. Also, for robots, users have preferred to
speak to robots in human-like languages [6], [7], and asking
has been regarded as the best method of cooperative control
for interactive robots [8], [9]. Thus, asking questions to elim-
inate uncertainty, both in terms of learning and interaction,
must be an essential ability for an interactive robot as long
as it interacts with humans.

However, asking insightful questions is difficult even for
humans [10] because question generation is highly context-
dependent and has a wide range of variability [11]. Addi-
tionally, implementing this ability is more difficult for robots
and other artificial intelligence (AI) agents. Accordingly, we
claim that investigations are required to explore the principle
of humans’ questioning under uncertainty to develop Al
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agents’ questioning strategies that resemble humans. Consid-
ering this approach, we will begin by reviewing the related
work in section II. In section III, we illustrate the inherently
curious nature of humans. Lastly, in section IV, we will
introduce a dataset framework that can be used to train robots
to have an inquisitive mindset.

II. RELATED WORK

All learning agents, including both humans and machines
that utilize natural language, require the ability to ask ques-
tions. Despite its importance and prominence, there is a lack
of research on questioning, notably in multi-modal settings
(e.g., using natural language on a given image).

Visual Question Answering (VQA), in particular,
prompted a lot of interest in computer vision and natural
language processing, but most VQA system is designed
to identify the critical visual components in the image to
predict the right answer given an image and the related
query in natural language [12], [13].

Only several studies of question generation in the visual
domain aimed to generate more natural and engaging ques-
tions as opposed to other models that ask too simplified
information revealed in the images. They focused on objects
by constraining Wh-questions [14] or events by involving
human annotators [15]. In recent times, several advanced
models have been introduced that can accept either a ques-
tion or an answer as input and generate the corresponding
counterpart [16], as well as pro-social conversational agents
that utilize human-like inquiries [17].

However, existing datasets and models were mainly fo-
cused on the range of apparent and straightforward situations.
To train interactive agent models to reduce uncertainty, we
need to focus on scenarios in inquisitive situations that align
with the curious nature of humans.

III. PSYCHOLOGY OF INQUISITIVE AGENT

Animals, including humans, feel pressure to mitigate un-
certainty when confronting it. From an evolutionary per-
spective, clarifying the uncertainty has been crucial for the
survival of animals, including humans [5].

Fig. 1 depicts the flow of uncertainty resolving process
of humans. Cognitive incongruities (e.g., information gap,
ambiguity, novelty, etc.) cause uncertainty [18], [19]. Then
the person appraises whether they can resolve it through
metacognition. If they believe they cannot, they may abandon
the issue. On the other hand, if they feel they can deal
with it, they might exploit various cognitive strategies to
solve it. Epistemic curiosity, the motivation for inquisitive
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Fig. 1.  Flow of uncertainty resolution process in humans. Schematic
reconstruction from [18], [19]

(i.e., information-seeking) behavior, plays the most crucial
role in the cognitive process for uncertainty resolution [18],
[19]. However, measuring curiosity is challenging due to its
intrinsic and abstract nature, and the efforts to enlighten the
processes have been made relatively recently [20], [21].

The most plausible explanation related to curiosity is infor-
mation gap theory [22]; people become intrigued when they
are aware of missing information with feeling unpleasant
or pleasant [23]. Several studies tested the proposal that
showed behavioral tendencies [24] and neural activities [25]
consistent with the theory. The empirical approaches showed
how curiosity activates the learning system in the brain by
bridging with other cognitive phenomena, such as reward
anticipation and learning facilitation. It also has significant
implications for designing interactive robots to encourage
successive learning and intellectual growth.

IV. PROPOSAL FOR DATASET DESIGN

Based on the flow of the uncertainty resolution process in
humans, as presented in Fig. 1, we suggest a dataset that
aims to stimulate a kind of artificial epistemic curiosity.
The dataset, which we call CAWS (Curious About Weird
Scene), consists of images, textual descriptions, and inquis-
itive questions. For eliciting epistemic curiosity, the images
intentionally contain inconsistencies or uncertainties, along
with questions that can be answered to satisfy curiosity and
encourage deeper exploration rather than just relying on what
is immediately apparent in the images.

We define something as *weird’ if plausible in real life but
still confusing or unclear when we encounter it. To obtain
these situations within the predetermined scope, we employ
Generative Al that arouses curiosity, and two researchers
inspect and select suitable descriptions. This dataset can be
used to train robots to generate inquisitive questions when
given a pair of an image and a textual description. Fig. 2
shows some concrete examples of our dataset design. It offers

A photo of a sneaker in the refrigerator,
with some food.

= Why are there sneakers in the
refrigerator?

= Is it okay if my sneakers are in the
refrigerator?

4 A wide shot photo of a drum set in the

middle of a library.

@ " Doesn't the sound of the drum disturb

{ reading?

= Who does want to play drums in the
library?

A photo of a back of a walking kid who

wears yellow raincoat and rainboots with

a pink umbrella on a sunny day.

*  Why does the kid wear a raincoat with
an umbrella in the sun?

« Could it have been raining earlier?

Fig. 2. Example scenarios for the training dataset. Images were generated
with the assistance of Al, DALL-E 2 [26], [27]. The texts in black indicate
the input prompt, and bulleted lists with green texts are questions made by
humans about the ungraspable point from the images.

an image, a caption describing the scene in the image, and
a list of questions.

Fig. 2(a) is an example of arising queries from an image
inconsistent with common sense about the purpose of an
item or the relationship between entities. Fig. 2(b) shows
questions that violate the predictions of social consensus
about public space and the environment. Fig. 2(c) addresses
queries arising when someone is unsure about the other’s
intentions.

We generated the images in Fig. 2 using DALL-E 2
[26], [27] by providing scene descriptions as prompts. With
the images, we could facilitate the inquisitive questions by
human annotators.

V. CONCLUSION

Asking good questions is essential for interactive robot
agents to be employed in the real world, significantly miti-
gating uncertainty through actively seeking out information.
Therefore, learning by asking is a great tactic. Considering
humans’ inquisitive nature, our study highlights the signifi-
cance of reflecting on their inquiry strategy under uncertainty.

Hence we propose a design for a novel dataset providing
partially incongruent or uncertain situations and drawing
out open-ended questions pursuing ungiven information;
This study can offer a practical guideline to improve the
interactive agent’s ability to come up with human-like and
insightful questions.

Additionally, applying the dataset presented in this study
enables it to participate as a supportive collaborator in
creative work, like an engaging friend who can read between
the lines. To achieve our goals, it is required to conduct



further research. This involves training the model to show
how useful the dataset is and comparing it to the text-
based question-generation performances of recent cutting-
edge chatbots (e.g., ChatGPT [28]).
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